Pentagon equation and matrix bialgebras
نویسنده
چکیده
We classify coproducts on matrix algebra in terms of solutions to some modification of pentagon equation. The construction of Baaj and Skan-dalis describing finite dimensional unitary solutions of pentagon equation is extended to the non-unitary case. We establish the relation between Hopf-Galois algebras and solutions to modified pentagon equation.
منابع مشابه
The Classical Hom-yang-baxter Equation and Hom-lie Bialgebras
Motivated by recent work on Hom-Lie algebras and the Hom-Yang-Baxter equation, we introduce a twisted generalization of the classical Yang-Baxter equation (CYBE), called the classical Hom-Yang-Baxter equation (CHYBE). We show how an arbitrary solution of the CYBE induces multiple infinite families of solutions of the CHYBE. We also introduce the closely related structure of Hom-Lie bialgebras, ...
متن کاملLeft-symmetric Bialgebras and An Analogue of the Classical Yang-Baxter Equation
We introduce a notion of left-symmetric bialgebra which is an analogue of the notion of Lie bialgebra. We prove that a left-symmetric bialgebra is equivalent to a symplectic Lie algebra with a decomposition into a direct sum of the underlying vector spaces of two Lagrangian subalgebras. The latter is called a parakähler Lie algebra or a phase space of a Lie algebra in mathematical physics. We i...
متن کاملNew types of bialgebras arising from the Hopf equation
Let M be a k-vector space and R ∈ End k(M ⊗M). In [10] we introduced and studied what we called the Hopf equation: R12R23 = R23R13R12. By means of a FRT type theorem, we have proven that the category HM H of H-Hopf modules is deeply involved in solving this equation. In the present paper, we continue to study the Hopf equation from another perspective: having in mind the quantum Yang-Baxter equ...
متن کاملar X iv : 0 90 6 . 41 28 v 1 [ m at h - ph ] 2 2 Ju n 20 09 HOM - QUANTUM GROUPS I : QUASI - TRIANGULAR HOM - BIALGEBRAS
We introduce a Hom-type generalization of quantum groups, called quasi-triangular Hom-bialgebras. They are non-associative and non-coassociative analogues of Drinfel’d’s quasitriangular bialgebras, in which the non-(co)associativity is controlled by a twisting map. A family of quasi-triangular Hom-bialgebras can be constructed from any quasi-triangular bialgebra, such as Drinfel’d’s quantum env...
متن کاملGeneralized Lie Bialgebras and Jacobi Structures on Lie Groups
We study generalized Lie bialgebroids over a single point, that is, generalized Lie bialgebras. Lie bialgebras are examples of generalized Lie bialgebras. Moreover, we prove that the last ones can be considered as the infinitesimal invariants of Lie groups endowed with a certain type of Jacobi structures. We also propose a method to obtain generalized Lie bialgebras. It is a generalization of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008